New procedures for the preparation of $[Mo_3S_4(H_2O)_9]^{4+}$, $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_7S_8(H_2O)_{18}]^{8+}$ and their Se analogues: redox and substitution studies on the double cube $[Mo_7S_8(H_2O)_{18}]^{8+}$ [†]

Maxim N. Sokolov, Nina Coichev, Horacio D. Moya, Rita Hernandez-Molina, Christopher D. Borman and A. Geoffrey Sykes^{*}

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

Alternative improved methods for the preparation of $[Mo_3S_4(H_2O)_3]^{4+}$, $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_7S_8(H_2O)_{13}]^{8+}$ are described from polymeric $\{Mo_3S_7Br_4\}_x$ (obtained by heating together the elements), *via* water soluble $[Mo_3S_7Br_4]^2$. Abstraction of neutral sulfur with phosphines and aquation of terminal ligands in dilute acids gives $[Mo_3S_4(H_2O)_{13}]^{4+}$ in yields of up to 85%. The single cube $[Mo_4S_4(H_2O)_{12}]^{5+}$, and corner-shared double cube $[Mo_7S_8(H_2O)_{13}]^{8+}$ is with hypophosphorous acid $(H_3O_2)_9]^{4+}$ with different reductants. The best procedure for $[Mo_7S_8(H_2O)_{12}]^{5+}$ are variable and in the range 10-65% depending on the reductant and procedure employed. The reactions provide examples of MO^{III} and MO^{IV} -sulfido reassembly from $[Mo_3S_4(H_2O)_{13}]^{8+}$, involving addition of $[Mo_3S_4(H_2O)_{19}]^{4+}$ to $[Mo_4S_4(H_2O)_{12}]^{4+}$, gives only $\approx 3\%$ yield, most likely due to the inertness of $[Mo_4S_4(H_2O)_{12}]^{4+}$. The procedures described are effective also for $[Mo_3S_6P_8r_6]^{2-}$, and in exploratory studies the double cube $[Mo_7S_8(H_2O)_{13}]^{8+}$ has been prepared for the first time. The kinetics of substitution of H_2O on $[Mo_7S_8(H_2O)_{13}]^{8+}$ by NCS⁻ have been investigated, and two stages identified. One of these is a $[NCS^{-}]$ -dependent equilibration, with rate constants (25 °C) for formation $k_f = 0.173$ M⁻¹ s⁻¹ and aquation $k_{aq} = 0.20 \times 10^{-3}$ s⁻¹ at $[H^+] = 1.96$ M, I = 2.00 M (Lipts), pts⁻ = *p*-toluenesulfonate. The other is a $[NCS^{-}]$ -independent step assigned as isomerisation of the S-bonded thiocyanato product ($k \approx 1.5 \times 10^{-3}$ s⁻¹). With $[Co(dipic)_2]^{-}$ (dipic = pyridine-2.6-dicarboxylate) as oxidant, second-order kinetics are observed with the rate constant 0.31 M⁻¹ s⁻¹ at 25 °C independent of $[H^+]$ in the range 0.87-2.00 M, I = 2.00 M (Lipts). The stoichiometry indicates higher than expected consumption (≈ 7 equivalents) of $[Co(dipic)_2]^{$

Studies on the Mo^{IV}₃ incomplete cuboidal $[Mo_3S_4(H_2O)_9]^{4+}$, and cuboidal clusters $[Mo_4S_4(H_2O)_{12}]^{n+}$ (n = 4-6), of which the 5+ cube is most readily accessed, have been the subject of earlier work.¹⁻⁶ The preparations take ≈6 d, however, and yields are generally small $(\langle 20\% \rangle)$.¹ Similar comments apply also in the case of the Se analogues. In this paper we describe alternative routes using as starting material polymeric {Mo₃Y₇Br₄}_x (Y = S or Se), obtained by heating Mo, S (or Se) and Br₂ in sealed quartz tubes. The latter can be converted into $[NEt_4]_2$ - $[Mo_3Y_7Br_6]$ (Y = S or Se),^{7,8} followed by chalcogenide abstraction and Br^- aquation to give $[Mo_3Y_4(\check{H_2}O)_9]^{4+,9}$ Procedures for the conversion of $[Mo_3S_4(H_2O)_9]^{4+}$ to $[Mo_4S_4(H_2O)_{12}]^{5+}$ I and $[{\rm Mo}_7 {\rm S}_8 ({\rm H}_2 {\rm O})_{18}]^{8+}$ II on a preparative scale are considered in this paper. Structures of all but one of the clusters indicated have been reported previously,^{7,8,10-12} the exception being [Mo₇Se₈- $(H_2O)_{18}$ ^{[8+}, which in exploratory studies has been identified for the first time. The earlier procedure used to prepare the cornershared double cube $[Mo_7S_8(H_2O)_{18}]^{8+}$ involves reacting $[Mo_3S_4 (H_2O)_9]^{4+}$ with Mg. 12 However, we have experienced some problems with the reproducibility of this method, and the procedures now reported give much improved yields.

The better yields for $[Mo_7S_8(H_2O)_{18}]^{8+}$ have enabled us to investigate the aqueous solution chemistry of this cluster for the first time, including kinetic studies on substitution (with NCS⁻) and oxidation (with $[Co(dipic)_2]^-$; dipic = pyridine-2,6-dicarboxylate). The double cube is of particular interest because, although there are a number of corner-shared double-

ALTON

cube derivatives of $[{\rm Mo}_3S_4({\rm H}_2{\rm O})_9]^{4+}$ with p-block metals (M) at the nodal position, general formula $[{\rm Mo}_6{\rm MS}_8({\rm H}_2{\rm O})_{18}]^{8+}$, this is the only one so far identified with a transition metal at the nodal position. From crystal structure information metalmetal bonding is clearly apparent in all transition-metal containing heterometallic derivatives of $[{\rm Mo}_3S_4({\rm H}_2{\rm O})_9]^{4+},$ including $[{\rm Mo}_7S_8({\rm H}_2{\rm O})_{18}]^{8+},$ but not the heterometallic main-group derivatives $[{\rm Mo}_6{\rm MS}_8({\rm H}_2{\rm O})_{18}]^{8+},$ as will be discussed. 13

Experimental

Starting materials

The polymeric compounds {Mo₃S₇Br₄}_{*x*} and {Mo₃Se₇Br₄}_{*x*} were prepared by heating mixtures of elements in sealed tubes at temperatures to 350 °C. These were then converted into water-soluble compounds, *e.g.* [Et₄N]₂[Mo₃S₇Br₆] and [Ph₄P]₂-[Mo₃Se₇Br₆] by procedures described.^{7,8} Samples of the green coloured clusters [Mo₃S₄(H₂O)₁₂]⁴⁺, UV/VIS peak at 603 (ε = 362 M⁻¹ cm⁻¹ per Mo₃) and [Mo₄S₄(H₂O)₁₂]⁵⁺, peak at 635 nm (ε = 435 M⁻¹ cm⁻¹ per Mo₄) were prepared in 2 M Hpts (*p*-toluenesulfonic acid) by procedures as described in ref. 1.

 $[\]dagger$ Dedicated to Professor R. G. Wilkins on the occasion of his 70th birthday.

Non-standard SI unit employed: $M = mol dm^{-3}$.

The complex K_3 [MoCl₆] was a gift from the Climax Molybdenum Co, a sample of K_4 [Mo₂Cl₈] was obtained by a literature method ¹⁴ and molybdic acid (99.5% MoO₃) was from Sigma Chemicals. The water soluble phosphine tris(3-sulfonatophenyl)phosphine, Na₃[(3-SO₃C₆H₄)₃P]·4H₂O, abbreviated here to PR₃³⁻, was from Strem Chemicals,¹⁵ and sodium thiocyanate (Analar) from BDH. Other reagents included *p*-toluenesulfonic acid (CH₃C₆H₄SO₃H), lithium carbonate (Li₂CO₃), triphenylphosphine, hypophosphorous acid (H₃PO₂) and vanadium metal turnings (99.7% purity); were all from Aldrich. Solutions of Lipts were prepared by Li₂CO₃ neutralisation of Hpts and recrystallising. The complex [Co(dipic)₂]⁻, UV/VIS peak 510 nm ($\varepsilon = 630$ M⁻¹ cm⁻¹), reduction potential 767 mV, was as used in other reports from these laboratories.¹³ Much of the preparative work requires good fumehood facilities since H₂S and H₂Se gases are evolved.

Determination of products

The products $[Mo_3S_4(H_2O)_9]^{4+}$, $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_7-S_8(H_2O)_{18}]^{8+}$ were purified by Dowex cation-exchange chromatography. Yields were determined by UV/VIS spectrophotometry, peak position $\lambda/nm~(\epsilon/M^{-1}~cm^{-1}$ per $Mo_3,$ $Mo_4~or~Mo_7)$ for $[Mo_3S_4(H_2O)_9]^{4+}$ 366 (5550), 603 (362); $[Mo_4S_4(H_2O)_{12}]^{5+}$ 635 (435), 1100 (122); $[Mo_7S_8(H_2O)_{18}]^{8+}$ 416 (7190), 480 (sh) (9065), 518 (10 280), 635 (8860), 950 (4242), all in 2 M Hpts.

Stability of $[Mo_7S_8(H_2O)_{18}]^{8+}$

The violet coloured double cube $[Mo_7S_8(H_2O)_{18}]^{8+}$ does not react significantly with O_2 over periods of ≈ 1 d. It is eluted from a Dowex column with 4 M Hpts, but not by 4 M HClO₄, due to the weaker complexing properties of ClO_4^- . On evaporating solutions in 3 M HCl to dryness at ≈ 50 °C a green product was obtained, and fragmentation to *e.g.* $[Mo_3S_4(H_2O)_9]^{4+}$ is evident. This does not therefore provide a means of preparing solutions in 2 M HClO₄ as in earlier work with $[Mo_3S_4(H_2O)_9]^{4+}$.¹⁶ Stock solutions of $\approx 10^{-3}$ M $[Mo_7S_8(H_2O)_{18}]^{8+}$ could be stored under N₂ for >3 weeks at ≈ 4 °C.

Kinetic studies

The NCS⁻ (for H₂O) substitution, and [Co(dipic)₂]⁻ oxidation of [Mo₇S₈(H₂O)₁₈]⁸⁺ were studied by conventional ($t_2 > 1$ min) UV/VIS spectrophotometry on Perkin-Elmer Lambda 9 and Phillips-Unicam 8740 instruments. Preliminary runs with [Co-(dipic)₂]⁻ showed that HClO₄ replacement of Hpts in reactant solutions, [H⁺] = 2.00 M, gave on extrapolation only a small (14%) decrease in rate constants for full replacement. Subsequent studies were in pts⁻ solutions. The temperature was 25.0 ± 0.1 °C, and ionic strengths were adjusted to *I* = 2.00 ± 0.01 M with Lipts. Absorbance *vs.* time data (150–200 points) were transferred to Software SX-17MV (Spectra Kinetic Work Station) on an Applied Photophysics stopped-flow spectrophotometer in order to fit consecutive equilibria for the reaction of NCS⁻ with [Mo₇S₈(H₂O)₁₈]⁸⁺ at 640 nm.

Results

New procedure for the preparation of $[Mo_3S_4(H_2O)_9]^{4+}$

The compound $[Et_4N]_2[Mo_3S_7Br_6]$ (5.5 g, 4.3 mmol) was dissolved in hot concentrated HCl. Solid PPh₃ (3.3 g, 12.7 mmol) was then added to the hot solution. It is important to ensure that no solid is left before adding PPh₃. The colour begins to change immediately to the characteristic green of the product. A copious precipitate of SPPh₃ forms. Heating was continued for a further 10–15 min, after which the solution was diluted (with stirring) with 4 times the volume of water, and the SPPh₃ filtered off. The filtrate was evaporated to dryness on a rotary evaporator, and the solid taken up in dilute HCl. The product in

Fig. 1 The UV/VIS absorbance spectrum of $[Mo_7S_8(H_2O)_{18}]^{8+}$ in 2 M Hpts (----), 2 M HCl (----) and inset the spectrum of $[Mo_7Se_{8^-}(H_2O)_{18}]^{8+}$ in 4 M HCl

0.5 M HCl was loaded onto a Dowex 50W-X2 cation-exchange column, washed with 0.5 M acid (100 cm³), and a single green band eluted with 2 M Hpts or HCl as required. Yield 85%. Use of the more expensive water-soluble phosphine PR_3^{3-} in a modified procedure had no obvious advantages. The method has also been tested starting from $[Mo_3S_7Cl_6]^{2-}$ or $[Mo_3S_7I_6]^{2-}$, when similar yields are obtained. The procedure with $[Mo_3Se_7-Br_6]^{2-}$ gives similar amounts of $[Mo_3Se_4(H_2O)_9]^{4+}$.

Preparation of $[Mo_7S_8(H_2O)_{18}]^{8+}$ and $[Mo_4S_4(H_2O)_{12}]^{5+}$

At the outset the aim was to improve yields of $[Mo_7S_8-(H_2O)_{18}]^{8+}$. At the same time, and equally important as it emerges, significantly improved yields of the single cube are obtained. The single cube which separates first on a Dowex 50W-X2 column eluted with 2–3 M Hpts is orange $[Mo_4S_4(H_2O)_{12}]^{4+}$. In the course of the chromatography, as the reductant is removed, green $[Mo_4S_4(H_2O)_{12}]^{5+}$ forms as a result of air oxidation, UV/VIS peaks at 635 (435) and 1100 nm (122 M^{-1} cm⁻¹ per Mo₄).^{5,17} Violet $[Mo_7S_8(H_2O)_{18}]^{8+}$ eluted with 4 M Hpts has absorbance peak positions λ/nm (ϵ/M^{-1} cm⁻¹ per Mo₇) at 416 (7190), 480 (sh) (9065), 518 (10 280), 635 (8860) and 950 (4242) in 2 M Hpts,¹² Fig. 1. The spectrum in 2 M HCl is also indicated in Fig. 1.

Some ten different procedures as listed were explored, Scheme 1, reactions carried out under N2. The best method for formation of $[Mo_7S_8(H_2O)_{18}]^{8+}$ is (*i*) the treatment of $[Mo_3S_4-(H_2O)_9]^{4+}$ in 2 M HCl (10 cm³, 16 mM) with H_3PO_2 (5 cm³, 50% aqueous solution). After 3 d at room temperature yields were up to 20% with amounts of $[Mo_4S_4(H_2O)_{12}]^{5+}$ in excess of 30%. Alternatively (ii) by heating to 90 °C for 60 min, only 9% of the double cube and 11% of $[Mo_4S_4(H_2O)_{12}]^{5+}$ were obtained. A procedure (*iii*) involving addition of $[Mo_3S_4(H_2O)_9]^{4+}$ (2 cm³, 16 mM) to $[Mo_4S_4(H_2O)_{12}]^{4+}$ (34 cm³, 0.96 mM), generated *in situ* by reduction of $[Mo_4S_4(H_2O)_{12}]^{5+}$ gave only 3% of $[Mo_7S_8^{-1}]^{5+}$ $(H_2O)_{18}^{8+}$ after 8 h at 80 °C. Procedures involving addition of $[Mo_{3}S_{4}(H_{2}O)_{9}]^{4+}$ (6.3 cm³, 2.5 mM) to (*iv*) $[Mo_{4}S_{4}(H_{2}O)_{12}]^{5+}$ (9 cm^3 , 1.8 mM) with heating to 80 °C for 4 h, and (v) K₃[MoCl₆], both in 2 M HCl and in the presence of excess H₃PO₂ (3 cm³, 50%), gave 18% and 10% yields respectively of double cube, but with no enhancement attributable to the second Mo component. Similarly (vi) heating [Mo₃S₄(H₂O)₉]⁴⁺ (two-fold excess) with K4[Mo2Cl8] for 70 min at 80 °C, no H3PO2 added, gave only a 4% yield of $[Mo_7S_8(H_2O)_{18}]^{8+}$ and 12% $[Mo_4S_4-(H_2O)_{12}]^{5+}$. On treating (*vii*) polymeric $\{Mo_3S_7Br_4\}_x$ for 3 h at 90 °C, or (*viii*) $[Mo_3S_7Br_6]^{2-1}$ for 3 h at room temperature, with H₃PO₂ (5 cm³, 50%), 2 and 5% yields respectively of [Mo₇S₈- $(H_2O)_{18}^{8+}$ with 9 and 63% of $[MO_4S_4(H_2O)_{12}]^{5+}$ were obtained. It was also found (*ix*) that addition of $[Mo_3S_4(H_2O)_9]^{4+}$ in 2 M

HCl to vanadium metal turnings, and heating to 90 °C for 2 h, gives 10% of $[Mo_7S_8(H_2O)_{18}]^{8+}$ and 30% of $[Mo_4S_4(H_2O)_{12}]^{5+}$. Finally, in a somewhat different approach, (*x*) on heating MoS₃ (0.17 g) for 3 h at 90 °C with H₃PO₂ (5 cm³, 50%) in concentrated HCl, only 1% $[Mo_7S_8(H_2O)_{18}]^{8+}$ but 26% of $[Mo_4S_4(H_2O)_{12}]^{5+}$ was obtained. In some procedures H₃PO₂ was replaced by BH₄⁻, but the latter is generally less satisfactory since precipitation can occur.

Preparation of $[Mo_7Se_8(H_2O)_{18}]^{8+}$ and $[Mo_4Se_4(H_2O)_{12}]^{5+}$

In the first procedure polymeric $\{Mo_3Se_7Br_4\}_x$ (1 g) was heated with concentrated HCl (20 cm³) and H_3PO_2 (5 cm³, 50%) aqueous solution) for 4.5 h under N_2 . A pale brown solution was obtained, and the greater part of the solid remained undissolved. The above procedure was modified to include Et₄NBr $(\approx 3 \text{ g})$ thus simulating the conditions for generation of [Mo₃Se₇Br₆]²⁻. The brown solution (darker than in the previous experiment) was filtered, diluted to $[H^+] \approx 0.3$ M and loaded onto a Dowex 50W-X2 column. The latter was washed with 0.5 M Hpts and then 3 M Hpts, giving two bands. These were a faster moving green band (peak at 658 nm) identified as $[Mo_4Se_4(H_2O)_{12}]^{5+,11}$ and a second violet band, both yields small ($\approx 2\%$). The latter was concentrated by Dowex chromatography, elution with 4 M HCl to give a violet solution with UV/VIS absorption peaks λ/nm (ϵ/M^{-1} cm⁻¹ per Mo₇) at 407 (7200), 579 (9700) and ≈630 (≈7000), inset to Fig. 1. Inductively coupled plasma (ICP) analyses for Mo/ppm (4 determinations) gave 14.61, 14.12, 17.62, 15.10 and Se/ppm 14.11, 14.22, 13.77, 14.34 corresponding to a ratio Mo:Se of 7:7.9. The Secontaining double cube is less stable in air than [Mo7S8- $(H_2O)_{18}]^{8+}$, especially on heating. Storage was under N_2 at 4 °C. In preliminary studies using procedure (*i*) above, better yields were obtained from $[Mo_3Se_4(H_2O)_9]^{4+}$.

Kinetics of NCS⁻ for H₂O substitution on [Mo₇S₈(H₂O)₁₈]⁸⁺

The early stages of substitution with replacement of a minimum number of H₂O molecules were studied. Scan spectra for the reaction with [NCS⁻] = 2×10^{-3} M are shown in Fig. 2. Absorbance changes monitored at 360 nm (≈ 2 h) are uniphasic, and plots of $\ln(A_{\infty} - A_{\theta})$ vs. time, linearity to $\approx 80\%$ completion, gave first-order equilibration rate constants k_{eq} , Table 1. A linear dependence of k_{eq} on [NCS⁻] is observed, Fig. 3, defining formation (k_{f}) and aquation (k_{aq}) rate constants, equation (1).

$$k_{\rm eq} = k_{\rm f} \left[\rm NCS^{-} \right] + k_{\rm aq} \tag{1}$$

From $[H^+]$ variations in the range 0.41–2.00 M both k_f and k_{aq} . Table 2, are dependent on $[H^+]^{-1}$, Fig. 4, as in equations (2) and (3). Individual constants evaluated from an unweighted least-

$$k_{\rm f} = a + b \, [{\rm H}^+]^{-1} \tag{2}$$

Fig. 2 The UV/VIS scan spectra (every 10 min) for the reaction of $[Mo_7S_8(H_2O)_{18}]^{8+}$ (4.0 × 10⁻⁵ M) with [NCS⁻] (2.0 × 10⁻³ M) at 25 °C in 2.0 M Hpts, I = 2.0 M

Fig. 3 Dependence of rate constants k_{eq} (25 °C) for the equilibration NCS⁻ with $[Mo_7S_8(H_2O)_{18}]^{8+}$ (4.0 × 10⁻⁵ M) at different $[H^+]$ 0.41 (\bullet), 0.72 (\blacksquare), 0.96 (\blacktriangle), 1.46 (\bigtriangledown) and 1.96 (\blacklozenge) M, from absorbance changes at 360 nm, I = 2.00 M (Lipts)

$$k_{ag} = a' + b' [H^+]^{-1}$$
(3)

squares fit give a = 0.173(4) M⁻¹ s⁻¹, b = 0.079(3) s⁻¹, $a' = 2.0(2) \times 10^{-4}$ s⁻¹ and $b' = 2.2(1) \times 10^{-4}$ M s⁻¹.

Scan spectra, Fig. 2, indicate a two phase reaction at other wavelengths, *e.g.* 640 nm, Fig. 5. Rate constants for the second phase from the slope of $\ln(A_t - A_x)$ vs. t, Fig. 5, are with

Table 1 The variation of first-order equilibrium rate constants k_{eq} (25 °C) determined at 360 nm for the reaction of NCS⁻ with [Mo₇S₈-(H₂O)₁₈]⁸⁺ (4 × 10⁻⁵ M), *I*=2.0 M (Lipts)

	FT T+1/N <i>K</i>	10-3INICC-1/N	1031 /1
	[H ⁺]/M	10 INCS J/M	$10^{\circ}K_{\rm eq}/{\rm S}^{-1}$
	0.41	1.00	1.04
		1.50	1.24
		2.00	1.46
		2.50	1.57
		3.00	1.78
		3.50	2.00
		4.00	2.14
	0.72	1.00	0.80
		2.00	1.14
		2.50	1.30
		3.00	1.42
		3.50	1.56
		4.00	1.70
	0.96	1.00	0.70
		2.00	0.92
		3.00	1.20
		3.50	1.35
		4.00	1.42
	1.46	1.00	0.57
		2.00	0.81
		2.50	0.92
		3.00	1.04
		3.80	1.20, 1.18*
		4.00	1.29
	1.96	1.00	0.46
		2.00	0.75
		2.50	0.82, 0.84*
		3.00	0.94
		3.50	1.04, 1.06*
		4.00	1.16
* Duplicate	runs.		

Table 2 The variation of rate constants (25 °C) for formation (k_{t}) and aquation (k_{aq}) steps in the equilibration of $[Mo_7S_8(H_2O)_{18}]^{8+}$ with NCS⁻, I = 2.00 M (Lipts)

[H ⁺]/M	$k_{\rm f}/{ m M}^{-1}~{ m s}^{-1}$	$10^3 k_{\rm aq}/{\rm s}^{-1}$
0.42	0.364	0.73
0.72	0.291	0.53
0.96	0.258	0.42
1.46	0.224	0.36
1.96	0.213	0.30

 $[NCS^-]$ in the range $(2-4) \times 10^{-3}$ M, $[H^+] = 0.96$ M, in good agreement with those obtained at 360 nm. The initial absorbance increase, inset Fig. 5, is independent of $[NCS^-]$, and an isomerisation step is proposed. Formation of N- and S-bonded products is proposed, equations (4) and (5), and isomerisation

$$Mo_7S_8^{8+} + NCS^{-} \xrightarrow{k_1' \atop k_{aq'}} Mo_7S_8(NCS)^{7+}$$
 (4)

$$Mo_7 S_8^{8+} + NCS^{-} \xrightarrow{k_r^{''}}_{k_{aq}^{''}} Mo_7 S_8 (SCN)^{7+}$$
 (5)

as in equation (6). The isomerisation rates are slightly faster

$$Mo_7S_8(SCN)^{7+} \xrightarrow{k_1} Mo_7S_8(NCS)^{7+}$$
 (6)

than for formation and aquation, and this process is the first observable phase of reaction. Since crystal structures of thiocyanato complexes of Mo, *e.g.* $[Mo_3O_4(NCS)_8H_2O]^{4-,18}$ $[Mo_3O_2S_2(NCS)_9]^{5-19}$ and $[Mo_4S_4(NCS)_{12}]^{6-,20}$ are N-bonded, the isomerisation process observed is assigned as a reaction from left to right in equation (6). Four runs were fitted all at $[H^+] = 0.96$, I = 2.00 M (Lipts). From fitting procedures

Fig. 4 Dependence of formation (k_f) and aquation (k_{aq}) rate constants (25 °C) on [H⁺]⁻¹, I = 2.00 M (Lipts)

Fig. 5 First-order plot of UV/VIS absorbance (*A*) changes at 640 nm with time (25 °C) for the NCS⁻ (3.0 × 10⁻³ M) reaction with $[Mo_7S_8(H_2O)_{18}]^{8+}$ (4.0 × 10⁻⁵ M) at $[H^+] = 0.96$ M, I = 2.00 M (Lipts). The slope of the linear portion gives k_{eq} absorbance vs. time changes consistent with the two-stage reaction

carried out values of k_1 are $\approx 1.5 \times 10^{-3} \text{ s}^{-1}$ and k_{-1} is an order of magnitude smaller at $\approx 3 \times 10^{-4} \text{ s}^{-1}$. The sum of the rate constants $k_{f}' + k_{f}''$ (range of values 0.16–0.35 M⁻¹ s⁻¹) is in agreement with $a + b[\text{H}^+]^{-1}$ (0.252 M⁻¹ s⁻¹) determined above, and $k_{aq}' + k_{aq}''$ of $3 \times 10^{-4} \text{ s}^{-1}$ is close to $4.2 \times 10^{-4} \text{ s}^{-1}$ from $a' + b'[\text{H}^+]^{-1}$ above. Owing to the need to include other [NCS⁻]-dependent steps at higher values of [NCS⁻], we did not attempt to extend further these fitting procedures.

It was not possible to monitor runs with the reactant $[{\rm Mo_7S_8(H_2O)_{18}}]^{8+}$ (2.3 \times 10⁻⁴ M) in ten-fold excess (absorbance changes too small), in order to determine statistical factors applying.⁴

Kinetics of the $[Co(dipic)_2]^-$ oxidation of $[Mo_7S_8(H_2O)_{18}]^{8+}$

The kinetics monitored at 635 nm are relatively straightforward. With $[Co(dipic)_2]^-$ in large excess, single-phase absorbance changes are observed, and first-order plots linear to 80% completion give rate constants k_{obs} as in Table 3. A linear plot of k_{obs} against $[Co(dipic)_2^-]$ is observed, Fig. 6, with no dependence of k_{obs} on $[H^+]$ in the range 0.87–2.00 M. The slope gives $k_{Co} = 0.31 \pm 0.02 \text{ M}^{-1} \text{ s}^{-1}$. It is concluded that equation (7), giving transient $[Mo_7S_8(H_2O)_{18}]^{9+}$, is rate controlling and is

$$\operatorname{Mo}_{7}S_{8}^{8+} + \operatorname{Co}^{\operatorname{III}} \longrightarrow \operatorname{Mo}_{7}S_{8}^{9+} + \operatorname{Co}^{\operatorname{II}}$$
 (7)

Table 3 First-order rate constants k_{obs} (25 °C) for the [Co(dipic)₂]⁻ oxidation of $[Mo_7S_8(H_2O)_{18}]^{8+}$ (5.00 × 10⁻⁵ M), I = 2.00 M (Lipts)

10 ³ [Co(dipic) ₂ ⁻]/M	$[H^+]/M$	$10^3 k_{obs}/s^{-1}$
1.00	2.00	0.22
2.00	2.00	0.57
3.00	0.87	0.96
	1.50	1.10
	2.00	1.04
4.00	2.00	1.38
5.00	2.00	1.55
7.00	2.00	2.22

Fig. 6 Dependence of the first-order rate constants k_{obs} (25 °C) for the $[Co(dipic)_2]^-$ oxidation of $[Mo_7S_8(H_2O)_{18}]^{8+}$ on oxidant. The reaction is independent of $[H^+] = 0.87$ (**A**), 1.50 (**B**), 2.00 (**O**), I = 2.00 M (Lipts)

followed by reaction (8). Determination of the products and

$$\operatorname{Mo}_{7}S_{8}^{9+} \xrightarrow{\text{fast}} \operatorname{Mo}_{3}S_{4}^{4+} + \operatorname{Mo}_{4}S_{4}^{5+}$$
(8)

stoichiometry were less straightforward. Thus for the reaction of $[Mo_7S_8(H_2O)_{18}]^{8+}$ (1.1 × 10^{-4} M) with $[Co(dipic)_2]^-$ (2.6 × 10^{-3} M) in 2.0 M HCl the products were separated after 3 h by Dowex 50W-X8 cation-exchange chromatography. Loading was carried out after diluting to $[H^+] = 0.2$ M, and washing was with 0.2 M HCl. Unreacted [Co(dipic)₂]⁻ was collected, and a stoichiometry of 7 ($\pm 10\%$) mol of $[Co(dipic)_2]^-$ to 1 of $[Mo_7S_8^-]$ $(H_2O)_{18}^{8+}$ was obtained from UV/VIS spectrophotometry. Three other bands were eluted with 0.5 M HCl and UV/VIS spectra recorded. It was not possible to quantify the first (yellow) and second (pink) bands. The yellow band was identified as the MoV_2 ion $[Mo_2O_2(\mu-S)_2(H_2O)_6]^{2+}$, peak at 370 nm ($\epsilon = 1940 M^{-1} cm^{-1}$ per Mo₂). The pink band is tentatively assigned as $[Mo_3O_4(H_2O)_9]^{4+}$ (505 nm) and/or $[Mo_3SO_3^{-1}]^{4+}$ (H₂O)₉]⁴⁺ (512 nm). A green band (peak at 603 nm) was quantified as 0.89 mol of $[Mo_3S_4(H_2O)_9]^{4+}$ per $[Mo_7S_8(H_2O)_{18}]^{8+}$, supportive of reaction (8). However, no $[Mo_4S_4(H_2O)_{12}]^{5+}$ prodsupportive of reaction (6). However, no $123_{4-4}(-2, -7)_{23}$ uct, peak at 645 nm ($\epsilon = 470 \text{ M}^{-1} \text{ cm}^{-1} \text{ per Mo}_4$) was detected. In separate experiments the further reaction of [Mo₄S₄- $(H_2O)_{12}^{5+}$ ($\approx 1 \text{ mM}$) with $[Co(dipic)_2]^-$ (9.9 × 10⁻³ M) was studied, and the products determined by the same procedure. The products included yellow [Mo₂O₂(µ-S)₂(H₂O)₆]²⁺ (0.67 mol), a pink band peak at 505 nm (not quantified) and green $[Mo_3S_4(H_2O)_9]^{4+}$ (0.41 mol per mol of $[Mo_4S_4(H_2O)_{12}]^{5+}$). The reactions occurring cannot be summarised by a single equation, and there is a shortfall in the Mo detected, suggesting that Mo^{VI} may also be formed. The product pattern is similar to that previously reported for the decay of [Mo₄S₄(H₂O)₁₂]⁶⁺, and intermediate formation of the 6+ cube is a strong possibility.²¹

Discussion

The double cube $[Mo_7S_8(H_2O)_{18}]^{8+}$ is of particular interest as the only example with a transition metal (M = Mo) at the nodal position. Heterometallic corner-shared double cubes $[Mo_6M-S_8(H_2O)_{18}]^{8+}$ of p-block metals with M = Hg,²² In,^{23,24} Tl,²⁵ Sn,²⁶ Pb,²⁷ Sb²⁸ and Bi,²⁹ have been reported. In the case of $[Mo_7S_8(H_2O)_{18}]^{8+}$ there is evidence for Mo–Mo bonding. Thus Mo–Mo distances involving the nodal Mo (3.05 Å) indicate a considerably shorter separation than Mo–M for the d¹⁰ or higher heterometal atoms in double cubes with, *e.g.* Mo–Hg 3.88 in $[Mo_6HgS_8(H_2O)_{18}]^{8+}$,²² Mo–In 3.45–3.81 in $[Mo_6-InO_2S_6(H_2O)_{18}]^{8+}$.²⁶ The same observation holds for heterometallic single cubes Mo_3M , which have short Mo–Fe (2.68) and Mo–Ni (2.64 Å) distances,¹⁰ as compared with Mo–In (3.73) ³⁰ and Mo–Sn (3.73 Å).¹³

In the case of the single cubes $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ and $[Mo_3InS_4(H_2O)_{12}]^{5+}$, conversion to double cubes can be achieved by addition of $[Mo_3S_4(H_2O)_9]^{4+}$ together with BH_4^- or H_3PO_2 as reducing agent, equations (9) and (10), yields 50–

 $Mo_{3}SnS_{4}^{6+} + Mo_{3}S_{4}^{4+} + 2e^{-} \longrightarrow Mo_{6}SnS_{8}^{8+}$ (9)

$$\operatorname{Mo}_{3}\operatorname{InS}_{4}^{5+} + \operatorname{Mo}_{3}\operatorname{S}_{4}^{4+} + 1e^{-} \longrightarrow \operatorname{Mo}_{6}\operatorname{InS}_{8}^{8+}$$
 (10)

80%.^{13,24} As far as reaction (11) is concerned, prior reduction of

$$\operatorname{Mo}_{4}S_{4}^{5+} + \operatorname{Mo}_{3}S_{4}^{4+} + e^{-} \longrightarrow \operatorname{Mo}_{7}S_{8}^{8+}$$
 (11)

 $[Mo_4S_4(H_2O)_{12}]^{5+}$ occurs, but only $\approx 3\%$ addition as in equation (12). The reaction requires substitution of three H₂O molecules

$$\operatorname{Mo}_{4}S_{4}^{4+} + \operatorname{Mo}_{3}S_{4}^{4+} \longrightarrow \operatorname{Mo}_{7}S_{8}^{8+}$$
(12)

on one Mo of $[Mo_4S_4(H_2O)_{12}]^{4+}$ by three μ_2 -S ligands of $[Mo_3S_4(H_2O)_9]^{4+}$. The low yield for this straightforward reaction is at first surprising, but is most likely due to the substitution inertness of $[Mo_4S_4(H_2O)_{12}]^{4+}$.⁶

The $[Mo_7S_8(H_2O)_{18}]^{8+}$ double cube is obtained in vastly improved yields of up to 20% by procedures described herein, the most successful of which involves treating $[Mo_3S_4(H_2O)_9]^{4+}$ with the reducing agent H_3PO_2 . No advantage stems from using an Mo complex, *e.g.* $[MoCl_6]^{3-}$, $[Mo_2Cl_8]^{4-}$ or $[Mo_4S_4(H_2O)_{12}]^{4+}$, as reducing agent. A significant observation is that $[Mo_4S_4^{-}(H_2O)_{12}]^{5+}$, in amounts up to 60%, is produced alongside the $[Mo_7S_8(H_2O)_{18}]^{8+}$. A breaking down and reassembly of Mo_3S_4 units is required to explain the overall reaction yielding $[Mo_7S_8(H_2O)_{18}]^{8+}$ and $[Mo_4S_4(H_2O)_{12}]^{5+}$. The reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with vanadium metal is also of interest, since the metal does not react with H^+ , and there must therefore be a reduction of $[Mo_3S_4(H_2O)_9]^{4+}$ at the metal surface, possibly with some incipient formation of an Mo_3VS_4 cluster. We have not as yet been able to identify such an intermediate by spectrophotometry.

It is also possible to use $[Mo_3S_7Br_6]^{2-}$, or the more inert polymeric $\{Mo_3S_7Br_4\}_x$, as a lead-in compound to obtain $[Mo_7S_8(H_2O)_{18}]^{8+}$ and $[Mo_4S_4(H_2O)_{12}]^{5+}$. This can be achieved directly by the use of H_3PO_2 as reductant. However a better procedure is to first use $\{Mo_3S_7Br_4\}_x$ as a source of $[Mo_3S_4(H_2O)_9]^{4+}$, when quite remarkable 80-90% yields are obtained. The polymeric material is prepared by heating the elements together (350 °C for 24 h) in a sealed quartz tube, and the product can then be converted into $[Mo_3S_7Br_6]^{2-}$ by treating with ammonium polysulfide, equation (13), followed by

$$\{Mo_3S_7Br_4\}_x + S_n^{2^-} \xrightarrow{90^{\circ}C} Mo_3S_{13}\}^{2^-}$$
 (13)

concentrated HBr, equation (14), in a relatively simple pro-

Table 4 Comparison of rate and equilibrium constants (25 °C) for NCS⁻ substitution on $[Mo_7S_8(H_2O)_{18}]^{8+}$ with those obtained for the $[Mo_4S_4-(H_2O)_{12}]^{n+1}$ ions (n = 4-6), I = 2.00 M (Lipts)

Reaction	Assignment	$k_{\rm f}/{ m M}^{-1}~{ m s}^{-1}$	$k_{ m aq}/ m s^{-1}$	K/M^{-1}
(i) $[Mo_4S_4(H_2O)_{12}]^{4+}$	Mo ^{III}	1.95	1.44×10^{-3}	1300
(ii) $[Mo_4S_4(H_2O)_{12}]^{5+}$	Mo ^{III}	0.116	$4.3 imes 10^{-5}$	2700
	Mo ^{IV}	0.0166	$5.0 imes10^{-6}$	3300
(iii) $[Mo_4S_4(H_2O)_{12}]^{6+}$	Mo ^{III} Mo ^{IV a}	13.3	$2.53 imes10^{-3}$	5220
Conjugate-base path	Mo ^{III} Mo ^{IV a}	5.1 ^b	$1.08 \times 10^{-3 c}$	4720
(iv) $[MO_7S_8(H_2O)_{18}]^{8+}$	Not made	0.173	$2.0 imes10^{-4}$	870
Conjugate-base path	Not made	0.079 ^{<i>b</i>}	$2.2 imes10^{-4c}$	360
^a Substitution on a delocalised Mo ^{III} Mo ^{IV} , ref. 21.	^b Units s ⁻¹ . ^c Units M	$M { m s}^{-1}$.		

$$[Mo_{3}S_{13}]^{2-} \xrightarrow[30 \text{ min}]{30 \text{ min}} [Mo_{3}S_{7}Br_{6}]^{2-}$$
(14)

cedure. The S-abstraction reaction of $[Mo_3S_7Br_6]^{2-}$ with triphenylphosphine,⁹ and aquation in 4 M Hpts to give $[Mo_3S_4(H_2O)_9]^{4+}$ gives the much improved route referred to. The procedure is based on a self-assembly process which yields initially the polymeric material with $Mo^{TV}{}_3$ units.

The corresponding Se (for S) studies have been carried out in an exploratory manner. Similar procedures can be used to prepare the Se cluster $[Mo_3Se_4(H_2O)_9]^{4+}$, as well as $[Mo_4Se_4-(H_2O)_{12}]^{5+}$. The violet coloured corner-shared double cube $[Mo_7Se_8(H_2O)_{18}]^{8+}$ has also been obtained for the first time. The yields (and stability) are at present less than for $[Mo_7Se_8(H_2O)_{18}]^{8+}$, but an extension to include the preparative route involving treatment of $[Mo_3Se_4(H_2O)_9]^{4+}$ with H_3PO_2 gives improved yields.

Using NCS^- to probe the substitution of H_2O on the double cube $[Mo_7S_8(H_2O)_{18}]^{8+}$, it has been shown that the latter has a substitution inertness comparable to $[Mo_4S_4(H_2O)_{12}]^{5+}$, Table 4. The 4+ and 6+ single cubes substitute one and two orders of magnitude faster respectively. Formation (k_f) and aquation (k_{aq}) rate constants for $[Mo_7S_8(H_2O)_{18}]^{8+}$ exhibit dependences on $[H^+]$ of the kind $a + b[H^+]^{-1}$. The 6+ but not the 4+ and 5+ single cubes exhibits a similar dependency on $[H^+]^{-1}$, in keeping with the greater tendency of water ligands on the 6+ and 8+ clusters to acid dissociate, *e.g.* equilibrium (15).^{6,21} Formation of

$$[Mo_7S_8(H_2O)_{18}]^{8+} = [Mo_7S_8(H_2O)_{17}OH]^{7+} + H^+ \quad (15)$$

a hydroxo conjugate-base form labilises water co-ordinated to the same Mo. The isomerisation step detected at 690 nm results from the ambidentate nature of NCS⁻. Isomerisation steps have been observed previously for NCS⁻ substitution on $[Mo_4S_4(H_2O)_{12}]^{4+} (1.17 \times 10^{-4} s^{-1} in 2 \text{ M HCIO}_4; 3.6 \times 10^{-5} in 2 \text{ M Hpts})^6$ and $[W_3S_4(H_2O)_9]^{4+} (1.02 \times 10^{-4} s^{-1} in 2 \text{ M HCIO}_4)^{31}$ which compare with $\approx 1.5 \times 10^{-3} s^{-1}$ for $[Mo_7S_8(H_2O)_{18}]^{8+}$ (in 2 M Hpts) in the present studies. The isomerisation is assigned to the formation of metastable S-bonded $Mo_7S_8(\text{SCN})$, alongside $Mo_7S_8(\text{NCS})$, and its isomerisation to $Mo_7S_8(\text{NCS})$. Crystal structures of a range of Mo–thiocyanate complexes,^{10,32} lend support to N-bonded forms being more stable. An unusual feature is that isomerisation occurs at a faster rate than complexation, and is observed as the first phase of reaction. The formation constants *K* obtained, Table 4, are less than for the single cubes in spite of the higher cationic charge.

The Sn and In containing double cubes, $[Mo_6SnS_8(H_2O)_{18}]^{8+}$ and $[Mo_6InS_8(H_2O)_{18}]^{8+}$, are converted into the corresponding single cube and $[Mo_3S_4(H_2O)_9]^{4+}$ using 1:1 amounts of [Co-(dipic)_2]⁻ as oxidant, equations (16) and (17).^{13,24} Yields of up

$$Mo_6SnS_8^{8+} + 2Co^{III} \longrightarrow Mo_3SnS_4^{6+} + Mo_3S_4^{4+} + 2Co^{II}$$
 (16)

 $Mo_{6}InS_{8}^{8+} + Co^{III} \longrightarrow Mo_{3}InS_{4}^{5+} + Mo_{3}S_{4}^{4+} + Co^{II} \quad (17)$

to 70% only of the heterometal cubes are obtained, because the oxidant reacts further with the single cubes $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ and $[Mo_3InS_4(H_2O)_{12}]^{6+}$ to give $[Mo_3S_4(H_2O)_{9}]^{4+}$ and Sn^{IV} or In^{III} as final products, equations (18) and (19). The double cube

$$Mo_3SnS_4^{6+} + 2Co^{III} \longrightarrow Mo_3S_4^{4+} + Sn^{IV} + 2Co^{II}$$
 (18)

$$\operatorname{Mo}_{3}\operatorname{InS}_{4}^{5+} + 2\operatorname{Co}^{\operatorname{III}} \longrightarrow \operatorname{Mo}_{3}\operatorname{S}_{4}^{4+} + \operatorname{In}^{\operatorname{III}} + 2\operatorname{Co}^{\operatorname{II}}$$
 (19)

 $[{\rm Mo}_7S_8(H_2O)_{18}]^{8+}$ gives a similar reaction sequence, equation (20), with the $[{\rm Mo}_4S_4(H_2O)_{12}]^{5+}$ product undergoing further

$$\mathrm{Mo}_{7}S_{8}^{8+} \longrightarrow \mathrm{Mo}_{7}S_{8}^{9+} \xrightarrow{\mathrm{fast}} \mathrm{Mo}_{4}S_{4}^{5+} + \mathrm{Mo}_{3}S_{4}^{4+} \quad (20)$$

oxidation to $[Mo_4S_4(H_2O)_{12}]^{6+}$. The latter then fragments ²¹ with consumption of additional $[Co(dipic)_2]^-$, giving rise to the $\approx 7:1$ stoichiometry.

To summarise, the preparative work highlights a selfassembly route in which polymeric $\{Mo_3S_7B_4\}_x$ containing Mo^{IV}_3 units is obtained. This product provides a much more effective and quicker route to $[Mo_3S_4(H_2O)_9]^{4+}$, $[Mo_4S_4-(H_2O)_{12}]^{5+}$ and $[Mo_7S_8(H_2O)_{18}]^{8+}$. Similar reactions have been demonstrated to occur with the Se polymeric form $\{Mo_3Se_7-Br_4\}_x$. Studies on $[Mo_7S_8(H_2O)_{18}]^{8+}$ have provided evidence for substitution inert behaviour comparable to that of $[Mo_4S_4-(H_2O)_{12}]^{5+}$.⁶ No evidence for localised structures as in the case of $[Mo_4S_4(H_2O)_{12}]^{5+}$ (as $Mo^{III}_3Mo^{IV})^{6}$ and $[Mo_4S_4(H_2O)_{12}]^{6+}$ (as $Mo^{III}Mo^{IV}$ pairs) was obtained.²¹ Oxidation of $[Mo_7S_8(H_2O)_{18}]^{9+}$ which fragments consuming further amounts of $[Co(dipic)_2]^-$, and giving a range of products similar to those obtained from $[Mo_4S_4(H_2O)_{12}]^{6+}$ (which is an intermediate).²¹ To avoid the destabilising effect of high positive charge on such clusters, negatively charged ligands are required, as in the case of $[Re_4S_4(CN)_{12}]^{4-.33}$

Acknowledgements

We are grateful to the Engineering and Physical Sciences Research Council for a research grant and financial support (M. N. S. and N. C.) and the University of Sao Paulo for leave of absence (N. C.).

References

- 1 M. Martinez, B.-L. Ooi and A. G. Sykes, J. Am. Chem. Soc., 1987, 109, 4615.
- 2 F. A. Cotton, Polyhedron, 1986, 5, 3.
- 3 T. Shibahara and H. Kuroya, Polyhedron, 1986, 5, 357.
- 4 B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1989, 28, 3799.
- 5 B.-L. Ooi, C. Sharp and A. G. Sykes, J. Am. Chem. Soc., 1989, 111, 125.
- 6 Y.-J. Li, M. Nasreldin, M. Humanes and A. G. Sykes, *Inorg. Chem.*, 1992, **31**, 3011.
- 7 V. P. Fedin, Y. V. Mironov, M. N. Sokolov, B. A. Kolesov, S. V. Tkacher and V. Y. Fedorov, *Inorg. Chim. Acta*, 1990, **167**, 39.

- 8 V. P. Fedin, M. N. Sokolov, O. A. Geras'ko, A. V. Virovets, N. V. Podberezskaya and V. Y. Fedorov, *Inorg. Chim. Acta*, 1991, 187, 81.
- 9 D. M. Saysell, V. P. Fedin, G. J. Lamprecht, M. N. Sokolov and A. G. Sykes, *Inorg. Chem.*, in the press.
- 10 T. Shibahara, Adv. Inorg. Chem., 1991, 370, 143-173.
- 11 M. Nasreldin, G. Henkel, G. Kampmann, B. Krebs, G. J. Lamprecht, C. A. Routledge and A. G. Sykes, *J. Chem. Soc., Dalton Trans.*, 1993, 737.
- 12 T. Shibahara, T. Yamamoto, H. Kanadani and H. Kuroya, *J. Am. Chem. Soc.*, 1987, **109**, 3495.
- 13 J. E. Varey, G. J. Lamprecht, V. P. Fedin, A. Holder, W. Clegg, M. R. J. Elsegood and A. G. Sykes, *Inorg. Chem.*, 1996, **35**, 5525.
- 14 J. V. Brencic and F. A. Cotton, Inorg. Chem., 1970, 9, 351.
- 15 D. M. Saysell, G. J. Lamprecht, J. Darkwa and A. G. Sykes, *Inorg. Chem.*, 1996, **35**, 5531.
- 16 D. M. Saysell, C. D. Borman, C.-H. Kwak and A. G. Sykes, *Inorg. Chem.*, 1996, **35**, 173.
- 17 C. Sharp and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1988, 2579.
- E. O. Schlemper, M. S. Hussain and R. K. Murmann, *Cryst. Struct. Commun.*, 1982, 11, 89.
 T. Shibahara, T. Yamada, H. Kuroya, E. F. Hills,
- 19 T. Shibahara, T. Yamada, H. Kuroya, E. F. Hills, P. Kathirgamanathan and A. G. Sykes, *Inorg. Chim. Acta*, 1986, **113**, L19–21.
- 20 F. A. Cotton, M. P. Diebold, Z. Dori, R. Llusar and W. Schwotzer, J. Am. Chem. Soc., 1985, 107, 6735.

- 21 M.-C. Hong, Y.-J. Li, J.-X. Lu, M. Nasreldin and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 2613.
- 22 T. Shibahara, H. Akashi, M. Yamasaki and K. Hashimoto, *Chem. Lett.*, 1991, 689.
- 23 G. Sakane, Y.-G. Yao and T. Shibahara, *Inorg. Chim. Acta*, 1994, **216**, 13.
- 24 M. N. Sokolov, R. Hernandez-Molina, D. M. Saysell and A. G. Sykes, unpublished work.
- 25 J. E. Varey and A. G. Sykes, Polyhedron, 1996, 15, 1887.
- 26 T. Shibahara and H. Akashi, Inorg. Chem., 1989, 28, 2906.
- 27 D. M. Saysell, Z.-X. Huang and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1996, 2623; D. M. Saysell and A. G. Sykes, Inorg. Chem., in the press.
- 28 T. Shibahara, K. Hashimoto and G. Sakane, J. Inorg. Biochem., 1991, 43, Abs D047.
- 29 D. M. Saysell and A. G. Sykes, Inorg. Chem., 1996, 35, 5536.
- 30 G. Sakane and T. Shibahara, Inorg. Chem., 1993, 32, 771.
- 31 C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1992, 325.
- 32 A. G. Sykes, in *Comprehensive Coordination Chemistry*, eds. G. Wilkinson, R. D. Gillard and J. McCleverty, Pergamon, Oxford, 1987, vol. 3, pp. 1229–1264.
- 33 V. P. Fedin, M. R. J. Elsegood, W. Clegg and A. G. Sykes, *Polyhedron*, 1996, 15, 485.

Received 14th January 1997; Paper 7/00319F